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ABSTRACT

The effect of the wall on the motion of elongated aerosol
particles was calculated on the basis of the{powerful) slender
body theory for a quiet and flowing medium. The cases treated
were those of cylindrical particles moving in a quiet environ-
ment or a Couette or a PoiseuWille flow near plannar surfaces with
various inclinations to the horizontal.
Experiments of trajectory photographing were performed in a liquid-
tank under creeping flow conditions and typical (aerosol) Reynolds
numbers whereby very aood correspondence with computations was

obtained.

The Brownian diffusion of (very small) cylindrical or discoidal
aerosol particles was also studied while being based on Brenners'
formal structure. To evaluate the signficant orientation density
function, the (mid-diameter)rotational diffusion coefficient of the
particles was calculated by a statistical-mechanical method. The
values of the coefficients were found to be largér than those computed

on the basis of continuum theory by a factor of about 30.

The typical diffusion situation of deposition on a plane within a quiet

air was treated.
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INTRODUCT ION

During the past several years a series of studies on the transport
mechanics of non-spherical aerosol particles was carried out mostly
with the support of the European Research Office, U.S. Army.These studies

were summarized in the final reports:

The Dynamics of Nonspherical Particles
I. Controlled Generation of Nonspherical Aerosols and Methods
for Their Size, Concentration and Electric Size Measurement (Contract

DAJA 37-72-3875; 1974).

1. Mobility in Non-Orienting Fields (Contract DAJA 37-74-C-

1208; 1975).

111. Mobiiity and Deposition in Still Air (Contract DAERO-75-G-021; !

1977) .
IV. Deposition from Flow (Contract DAERO-76-G-014; 1978)
and in the parallel journal publications:

1. '"On the stochastic Motion of Nonspherical Aerosol Particles.|. The
Aerodynamic Radius Concept'' by Isaiah Gallily and Aaron Hi-Cohen, J. Colloid

Interface Sci. 56, 443-59 (1976)

2. " ,'1. The Overall Drift Angle in Sedimentation', by

Matitia A. Weiss, Aaron-Hi Cohen and Isaiah Gallily, J. Aerosol Sci. 9,

527-41 (1978).
3. ''On the Orderly Nature of the Motion of Nonspherical Aerosol

Particles. |. Deposition from a Laminar Flow.' by lIsaiah Gallily and

Alferd D. Eisner, J. Colloid interface Sci68, 326-37 (1979).




Likewise, they were reported in the following articles:

4, "On the Orderly Nature of the Motion of Nonspherical Aerosol
Particles. Il. Inertial Collision between a Spherical Large Drop-
let and an Axially Symmetrical Elongated Particle' by Isaiah Gallily

and Aaron-Hi Cohe, J. Colloid Interface Sci. 68, 338-56 (1979).

5. ¢ L , Further Results,' by Isaiah Gallily and

Aaron Hi-Cohen, ibid. 71, 628-30 (1979).

The efforts invested in all of these investigations culminated in the
establishment of a mathod of claculation of the gravitational sedimentation
in still and laminarily flowing gas, and of the inertial impaction on
various surfaces of axi-symmetrical particles such as cylinders and

disks. The method has been ellaborated in the (above) publications 1-5 and

partially checked by experiments; however, it is far from being compiete.

One problem in the analysis of our particles' transfer phenomena which
has not been considered is the effect of the surface exposed to the aerosol on
the collection process itself. The effect, related here only to the motion

of the particles in the adjoining gas layer, is due to :

a. The fluiddynamic interaction between a particle approaching a
surface and the latter which essentially stems from the change of the flow field

due to the emergence of an additional boundary condition.

b. The presence of long (electrostatic) or short (Van der Waals) surface

particle forces.

Another untreated problem concerns the stochastic diffusional turbulent and/or

Brownian movement of the particles.
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It is needless to stress the significance of the first problem which has
been treated scarcely for the case of spherical particles by Brenner(1),

Gallily and Mahrer (2) and others and has been almost untouched in the

case of the nongpherical ones.

In most studies on the orderly motion of any particle, exprassed by the

equation of translation

wAdusdi =T F . 4+ F, m
and rotation
d(I" w)/dt =% L+ L, (2]

i

the fluiddynamic operating force FF and torque LF have been calculated
“or the substitute situation in which the particle is infinitely far from
the  (collecting)surface. This has been obviously a simplification whose

justification was checked in the calculation of FF and LF for some spheri-

ca! cases (1,2). For the nonspherical case, it has not been studied at all.

The importance of the second problem is self evident for sufficiently
turbulent field or very small particles for which the fluctuating part of the
force FF’ viz. FF - (F,) , can not be neglected in comparison with

the mean one (FF).
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AIM OF STUDY

In view of the above review of the state of research, it was thought

worthwhile to investigate:

1. The effect of the collecting surface on the motion of nonsphe-~

rical particles near, and their deposition on it, and, independently,

2. The diffusion of nonspherical particles.

These two probiems seemed immediately too formidable for a general
treatment; thus their study was restricted in the first subject to the

case of cylindrical particles much larger than the mean free path 1 of
the medium's molecules ( Km (< {1 ), and a planar solid wall, and

in the second subject to the Brownian diffusion of cylindrical and discoidal
particles much smaller than | (Km << 2 ) ., Cylindrical and
discoidal forms respectively serve as idealized model shapes. of the

real (harmful)asbestos or other significant fibrous particles and of

latelet~like ones. So, the restriction to the above morphology is not

very limiting in significance.

A. THE WALL EFFECT

|. Theoretical

1. Method

a. General
Here we preferred to use slender body theory rather than the ()imited)

method of Wakiya which is based on Fourier analysis technique (3).




The slender body theory method is much more general than the latter;

it can be employed in situations where the (aerosol) particle is even
far{from walls with a better advantage than that obtained by being based
on the much used Oberbeck's (4) and Jeffery's (5) equations. In other

words, it is very useful.

The method is apt for the treatment of the motion of particleswhose
4
characteristic size v, (= V 27 4 ) is much larger
- ) 5
than the mean free path 1 of the mediums molecules [ x— = - >l

and whose characteristic Reynolds number Ke is much smaller than

unity. In fhat case, the equations of fluid motion tc be solved are

vy - Ve = 0 (3]

and

V-wv(r) = 0 . [1]

The theory, developed by Batchelor (6) ,Chwang and Wu(7), Blake (8),
Cox (9) and others, deals with elongated particles in which the ratio R

between the characteristic cross-sectional radius b and the semi-length 1|

is k= —%l<< 1 ,the change of the local equivalent cross-sectiona)

For symbols see NOMENCLATURE :




ey

radius 5 is small compared with &, /& , and the local radius

ral

of curvature is much greater than . (Fig. 1).

X2

X1

Fig. 1. A slender body (not necessarily a straight cylinder);

coordinates used in the analysis,

Under these conditions, the disturbance velocity « (r) produced by the

moving particle is given by the multipole expansion
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vilr) = j fé' irt] uijor, r'ode' + {{ju (r) uije (r el A
-t -{
“‘r'fa'n (V“)u;éie)(r,r')dr‘ + - [5)
where, with the Einstein's convention adhered to, -Fa' (r) (Stokeslet),
"J" (we) (doublet), 50y Ce) etc. are

{imaginary) poles causing the disturbances i (r, r'y etc; the latter

are actually the proper Green functions (APPENDIX 1).

The calculation of the (critically required ) fluiddynamic force Fg
and torque L ¢ appearing in Egs. (1] and [2] can be performed

once the Stokelet +a’ (r") distribution is known since {Fig.))

L
Fe = f +($) d‘ (6]
-
and
L
Lp=g(xx{(s))ds (71
-l
The finding of ‘J (v") cannot be carried out by the solution of the

ful) Eq. [5] with the proper boundary conditions on the particle
(v (v)=VU (v) Sy(r)+ wx x for r — $ + b) and
on the wall (v(v) = 0 ) . Thus, one uses as an approximation for ¢ » &

(Fig.1) an "outer expansion' in which
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L
vilr) =f~zé’\'r'7 i (rr's de (81
-1

only, and for '} RO BPZA (for which the disturbance can be assumed to

evolve  from a portion of an infinite straight cylinder of radius §&_,

an ‘‘inner expansion'' (6)

Yir =z =t € () (fm %‘ K]+ Up(8) (9]

and

Vi ("\/ = 14'1'\'!-&. C'(r)[&a -€g—‘- + _géfgé_+ ‘(LJ(QJ* U;.u [‘0]

where 1' , UV (= 2 , 3 ) respectively stand for the particle-locked

local coordinates Xp oy Xgvo, Xgro, ¢ y C; are quantities

affected by the wall and K , K‘J are constants defined by the

geometry of the cross-section at e' (Fig. 1). This "inner expansion'

can be also written in the vectorial form fit for any coordinate system

4ripvie) = M. c Cn?g’fm.n.c +I-C-I'C+4mpVU  [t1]

where M, C, TV, I, I' are defined in APPENDIX 1.

The two approximations are matched in a region in which they are both

assumed to hold ((, < 8¢« f ) , and the relevant constants so derived.

In the case of the ''outer expansion'', one can write




w
D . . i 21
U (v-'r‘) = U;j (V‘l?') + de cr, r) (2l

- / M . . . . ! -
where w, ; (r, r, has singularities on the particles axis

H i and 1;;('-, r'. s non-singular when ¢ 3y § |

b. Straight Body

In this case Eq. [8]is integrated by Batchelor's approximation to [11] (6)

which gives

v (e) ={L +fn e :z/e‘ylzl}n-{ + n-{(m—fs

~I"f+— M R+A+I4 [13]
I",R and A being defined in APPENDIX 1, ¢ =[ {n (2(/6)]"

and » = (by/ 6) . Now, matching the coefficients of the

(singuiar) {m -%! part in[11] and [13] , one gets

Cis) = f(s) (14)

and, doing the same for the non-singular part,

3 L) ° °
Yrrp uGs) ={?‘-+(n(-(';:/£) a}ﬂ-f +I -Tef+ L MR+A 19

where I°=-I"-0‘L2 h and w°= 1T M .
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At this stage {, (s) can be numerically calculated from [I5]

by dividing our particles' axis into N equal parts, to each of which is
associated an average £. () , and performing the integration of

'tk;z Cr, ') and T£T;ﬁ respectively appearing in

A and R 4 so, for the two-dimensional case of particles' motion,

one obtains 2 N equations for 2 N unknowns while for the three-

dimensional case one obtains 3 N equations for 3 N unknowns.

According to Batchelor (b), it is possible to use here a quick iterative

method by writing

(z) (;
+. () = ¢ “F‘)(S) + (2‘%2 (s) + 6'5-’(;)(3) * e 06]
¢ 't .

i.The Wall Effect

Dealing with a cylindrical particle undergoing a translational

and rotational motion near a planar solid wall (Fig. 2) and statisfying




Fig.2. A slender cylinder-planar solid wall system, coordinates
used in analysis,

the no~slip condition on all boundaries, one has to Introduce on the
reflected Image of the particles' axis a line-distribution of point
forces, - {,(x) ,a line distribution of doublets, 1} £ x)

and a line distribution of quadrupdes, - 4|4 (x) (8) ,
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In this case

riord) (ary) (7]

L4
jr-rq?

and
w N 12 i = v (re- ry's / \
u.‘.a, ("’ v, = —I-;"?;I— - C fY‘"v,'L" - "’2"‘(”) \g'd fak‘,-a}'g -J
« h&i _ _3h PR Sl ry ot Sk e _ Brierer (18]
fe*® Ll e 3 leol®
where o& is 1 or 2 and 'L,a' , ® = 1,2,3 respectively |

ii. Motion within a Flow

Similarly to the '"outer expansion' in a quiet medium, it Is possible

to write in this case for €/g &1

l
vi(r) = [ 4 (7w (e e ol n9)

-l
in which v (r)z v(r) - v*() and v (r)  Is the
undisturbed flow ((v(r) —  v(r) s  — o0 ) ; the

"inner expansion'' can be expressed by an equation similar to [19)
but where C = ( (‘," , Cl:. , C;) Is now affected by the

flow.
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Thus, after performing the necessary matching between {19]and the

modified [11), one gets like .15

[ (- xphi2
M

|- . ]}M F(+ 1946

ATk U|<s) :{—5- +i

-rr.n.-ffsl-r—;— MR+ A (S [203
inwhich U'(s) = U @) ~-wv*3s., | U($ 1is defined by
v(r) —> U for r —>»8+b ,and all other symbols are

as marked above.

Expanding v"(r) on the (straight) particles' axis in the

form
0 =BY 80 x +3Fxs R1)

and putting X, = Xi, (i1 being cos @ and i, being siné6 ),

one has for U'(s)
V) = U, () -v7(x) = \/;"BLX"-B.;@XL“" [22)

@
where Ba = e‘d" wd tie = ,B‘. y Wi Is the rotational velocity

of the particle and Vi Is its translational veloclity,
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2. Computational Procedure
The trajections of our particle were derived from the solution of Egqs. 1

and 2. on the specific assumptions that the particles are:

i. homogeneously dense
and
ii. affected 6nly by the gravitational force mg, the fluiddynamic

force FF (Eq. 6] ) amdthe fluiddynamic torque LF'

At first were treated two-dimensional cases, In which particles axis

stays in a plane containing 9 ; then we considered three dimensional

situations.

For the two-dimensional cases, where the [1] and [2] turn into

mo(\//dt = (m-m')3 + F, [231

and (since w, = s, = 0)
(28]

we employed:
i. A quick technique based on Eq. (16l
and

ii An elaborate technique described in APPENDIX 1.

The computation itself was performed (on the Hebrew University CYBER 74 €DC com-
puter) by the use of a fourth-order Runge -Kutta method; the time intervals
were from 5 lo'h to 3 - Io-h second, depending on the (decreasing)

gap between the particle and the wal!.
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11. Experimental

The experiments were essentially int:nded to check the calculations in

their significant points. Thus, one could in principle either:

1. Determine the force FF and torque L

orientations and compare with theory

F from measured trajectories and

or

2. Determine the whole trajectories of the particles with their orienta-

tions and test against computations.

At any case it was necessary to measure particles’' location .and

orientation as a function of time; so, since the observation of small cylind-
rical aerosol particles is complicated by light scattering phenomena

(10), it was thought worthwhile to use large (macro) particles which move in oil

in a creeping motion ( Re << 1 too.

1. Method

In essence and without ioss of generality, our experiments were carried
photographing
out by/a two-dimensional motion of a homogeneously dense cylindrical body
falling under the action of gravitation in an oil medium. Here, out of the
above two alternatives, we chose the latter which is more exact than the

former as it does not involve differentiation of location and velocity data

curves.

2. Apparatus

The apparatus designed and constructed for the above purpose (Fig. 3,a

and b) consisted of:




Fig. 3. The experimental apparatus {achematical) (a) A, Tank;

B, plate (wall);C, release device; D, cylinder; E, movie-camera; F, platform;
G, scale, H, mirror. (b) K, cylinders' holding part of release device;

L,M, sliding rod and guide, respectively, a,, a, pivate rods.

1




A tank A containing silicone oil in which was suspended a polished steel

plate B, a device C to release a metallic cylinder € into the liquid, a
movie-camera E and light source for the trajectory photographing, a moving
platform F for the camera, and a scale G -mirror - light source combination

for locating the particle.

The tank was made of Plexiglas in the (inner) dimensions of 50 cm height,
50 cm. breadth and 3 cm. width and was kept vertical by its own weight.
The liquid (F 111/10000 dimethyl silicone fluid, IC!, England) had a

(nominal)viscosity o of lOk centistokes or about 100 poise dynamic

viscosity at 25°C with a temperature coefficient of 0.02 %,/OC, and a

-3 at 25°C. This 1i quid was satisfactorily Newtonian

density of 0.968 g. cm
as tested before each experiments by measuring p o at various shear rates
dVi/23d xj by the settling velocity of various sized Stokesian steel

balls. The cylinder used as a tested particle had a radius b of 0.0075 cm,

a semi-length 1 of 1.5 cm. and a density of 7.780 g. cm-3. It was intro-
duced into the liquid by a slow sliding movement in the groove of the devices'
edge X (Fig. 3 b) and along the middle (vertical) line of the plate

(wall). The camera was a Bolex H 16 Reflex movie instrument (Baillard,

Switzerland) equipped with a 1: 18 lens.




3. Procedure

The viscosity ® of the liquid was determined before every run as
described above; it was found to be constant, within the experimental
error, at the value of 112 + 2 poise for 16.4°C. The temperature of
the oil, measured at various locations in the tank, was constant to a
degree of 0.02°C, which amounted to a viscosity change of 0.02 poise.
The trajectory photographing was performed while keeping the center of
the falling cylinder on the optical axis of the camera as well as
possible. The reading of position and orientation of the particlés image on
the movie film was carried out with a Nikon 6CT2 profile projector (Nikon,

Japan) to a (nominal) accuracy of + 0.00) mm.

Here it should be pointed out about the critical requirement of two-
dimensionality to which a self-restriction was imposed. Due to the cylindri-~
cal rod release-operation,there was always a chance that the particle will
not move with its axis in the plane of 8 . So, in every experiment, the
fiim image of the falling rod was aposteriori checked against the expected
value deduced from the actual size and orientation of the body, and,when

a deviation occured,this run was discarded.

11Y. Results

As the checking experiments had to be restricted to a liquid medium
and macro particles, the calculations were confined to that situation too.
Dealing with physical cases which can be analyzed by continuous, classical
fluiddynamic methods, this did not matter as long as creeping motion
conditions ( Re (< 4 , km < 1 ) still prevailed and the liquid

specific effects associated with the acceleration of the particles, viz. the
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added mass and moments of inertia and the Basset term influence (ll),

could be neglected.

Thz cases selected for computation were chosen to be a two-dimensioral

motion in a still environment near:

i. A vertical wall (Figs. 5 through 8),
ii. An horizontal wall (Figs. 9 through i1),

iii. An inclined wall (Figs. 12 through 19)

and a two-dimensional motion within:

i. A two-dimensional Couette flow over an horizonta! wall (Fig. 20)

ii. A two-dimensional Poiseutlle flow through an horizontal channel

(Fig. 21).

All of these cases simulate real situations. Thus, for example, if the
particles are small enough, then any corrugated surface can be represented
by inter-connected plan ar portions of various inclinations to the horizontal;
likewise, a general laminar field can be approximated by a series of inter-
adjoining Couette flows. The restriction to two-dimensional motion which
is relaxed latter on in a further study (not reported here) is not serious
since ip many instances such a situation is indicative enough of the physical

ocnurences,

The distances and angles employed in the calculations are brought out
in Fig. 4 (the unit of distance is always the semi-length 1). Thus the

undisturbed Couette flow was expressed by

vy (x,) = &, D, [25]
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where < is the (constant) velocity gradient, while the (undisturbed)

Poiseuille flow was given by

where <.

<.

is a (flow) constant and a is the half width of the channel.

The typical results shown here are presented in terms of the (operationa-

lly) important drift displacements and linear velocities and the

intuition-assisting rotational velocities and particle orientation.

Fig. 4. A slender body near a wall. Distances

and angles used in calculations.
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A Quiet Medium

o\

i (1)

. 1.00

TR

Fig. 5. Drift displacement and orientation of a cylinder

near a vertical wall as a function of time.
; D=1 168l ,6,=21°(0= 7/2-6); 1= 1.5cm;
b = 0.075 cm. : §p = 7.780 g. cm-3; p = 100 poise;

e ,oxperimental; — ,theoretical

o oo

e e Y

usee)
Fig. 6. Drift displacement and orientation of a cylinder near a
vertical wall as a function of (ime. Same parameters as

of Fig. 5 except for : A. Dy, = 1.5 1; 6, =89°. B8: 8,= 21,
6,=93° .
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Fig. 7. Orientation and angular velocity of a cylinder near

a vertical wall as a function of time, for cases

A,B of Fig. 6.

Vi
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Fig. 8. Vertical (Vl) and horizontal(vz) velocities (in 1/sec)
of a cylinder near a vertical wall for cases A and B of

Fig. 6.




V, (| /sec)

0.l

10.0 7.5 5.0 2.5

Fig. 9. Vertical velocity of a cylinder falling towards
an horizontal plane as a function of D] and for
various initial orientations 6, (in rads).

Same cylinder's and liquid% properties as of Fig.5.
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Fig. 10. Drift (horizontal) velocity of a cylinder falling towards
an horizontal plane for various initial orientations S,

(in rods). Same cylinder's and liquid's properties as of Fig.5.
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¥ig. 1. Angular velocity of a cylinder falling towards an horizontal

plane for various initial orientations (in rads) at D,

= 101, 5 1. Same cylinders' and liquids properties as of Fig.5.
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Fig. 12. Time history of a cylinder falling towards a plane inclined to
the horizontal at angles: A-|5°, B-30°, C-hSo, D-60°,E-75°;

initial orientation - vertical; D, = 10 1. Numbers near

positions indicate elapsed time in seconds. Same cylinders and

mediums properties as of Fig. 5.
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13. Time history of a cylinder falling towards an inclined plane.

Fig.
Same parameters as of Fig. 12 except for horizontal initial

orientation.

Fig. 14. Drift displacement of a cylinder falling towards an inclined

plane. Same parameters and conditions as of Fig. 12.
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Fig. 15. Drift displacement of a cylinder falling towards an inclined

plane. Same parameters and conditions as of Fig. 13.
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Fig. 16. Vertical velocity of a cyiinder falling towards an inclined

plane. Same parameters and conditions as of Fig. 12,
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Fig. 17. Drift (horizontal) velocity of a cylinder falling towards an

inclined plane. Same parameters and conditions as of Fig.13.

W10 (radseec)

[
10 20 80 40

L (seq

Fig. 18. Angular velocity of a cylinder falling towards an inclined
plane. Same parameters and conditions as of Fig. 12, (D‘

reaches a minimum at the point P),
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Fig. 19. Angular velocity of a cylinder falling towards an inclined
plane. Same parameters and conditions as of Fig. 13. (D,
!
reaches a minimum at the point P.). '
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Fig. 20. Change with time of the vertical velocity, A (in 1/sec),angular

velocity B (in rads/sec), distance from the wall C (in 1) , and
orientation angleD(in rads) of a cylinder within a Couette flow.

D|,:. =20 1.
Same cylinders and liquids properties as of Fig. 5.
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Fig. 21. The vertical velocity A (in 1/sec), angular velocity B
(in rods/sec), distance from the wall C (in)), and orientation
angle D (in rads) as a function of time. Medium-air of ®
-5 ,
= 1,718 X 10 ' poise; particle - 1 =20 pm ;5 b = 0.5 pom
8, =2.23 g. cm-3; channels half width a = 0.5 cm;

k, =0.15 (l—sec)-l.
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V. Discussion
The results shown in the above figures should be discussed while keeping

in mind the behaviour of a cylinder under creeping motion conditions in an

unbounded (far from walls) fluid. In the latter case, an homogeneously dense

cylinder which settles down in an external field devoid of orienting forces
moves with a neutral stability, viz. a fixed orientation angle (12). In our

case, however, the cylinder is definitely subjected to a torque.

Vertical Wall; Still Medium

Here one can observe:

i. A continuous change of the orientation angle 6 caused by the wall-
created torque,

ii. A continuous development of a drift and an increase of the displa-

cement DZ'

It turns out that the sign of the torque depends on the angle & ;for every

initial distance of the particle from the wall there exists a critical angle g*

such that
Le < 0 when 181 > o™ ,
L, >0 when g1 < g™ ,
and
LF = 0 when 161 = B" .

The correspondence between theory and experiments depicted in Figs. 5 through 7

is really good, which produces a confidence in our calculational method.




Horizontal Wall; Still Medium

Here particles motion is always two-dimensional. Its characteristics are-

i. A continuous decrease of the sedimentation velocity, V‘, as the
plane is approached,
ii. An enhanced wa!l influence for small 6. ,

iii. A negligigble effect for large g,( >0 %:

iv. An increased value and sensitivity to ¢, of the angular velocity

as the particle-plane gap is reduced,

V. A constant drift velocity, V2 , till very small distances from

the p! ne.

It is interesting to compare these results with those of a spherical particle-

horizontal wall situation(2) where a similar behaviour is observed.

Inclined Wall; Still Medium; Two-dimensional Situation

From the results for the inclined wall it is seen that:

i. In the case of a vertical initial orientation, the torque is

positive, which will cause the cylinder to drift from right to the left (Fig.12).

ii. In the case of an horizontal initial orientation, the torque is
negative but, nevertheless,the cylinder will drift in the former direction too

(Fig. 13).

iii. In the case of a wall-inclination of a little less than 75° for a
vertical initial eylinder-orientation and of a little iess than 60° for an
horizontal wall-inclination, the angular velocity e and the horizontal
separation D, respectively reach a minimum and a maximum at the same time.

Thus, the particle will not collide with the surface, which is of a great signifi-
cance.
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Here one should note the aerosol specificity as compared to the
motion within our liquid. Since both the mass ard the moment of inertia of
a cyiindrical particle are proportional to bz, it comes out that the thinper
is the particle the greater are its translational (in I/sec) and rctational
velocities attained after a certain time. However, if one returns to dimen-
sional quantities, one observes that the overall particle drifts in aeroczol
and liquid systems,as caused by a plan ar wall, will still be the same. For an
aerosol system, the influence of the wall is manifested already at distances

of about 50 1 ( 2).

Motion within a Flow; Two-dimensional Situation

Couette Flow

From Fig. 20 it can be seen that the behaviour of our cylinder as it rotates
in the gradient flow is essentially the same as that far from a wali (''Depo-
sition from Flow', Final Report DAER0O-76-G-14, 1978, and Gallily and Eisner,
J. Colloid Interface Sci. 68, 320-37 (1979)). The wall effect is shown in the
decrease of the second maximum of the vertical velocity V, as the particle

nears the horizontal plane (curve A); the effect is, however, over-shadowed in

the angular velocity B curve., It is noteworthy that the (rotating) particle spends

more than 85% of its time in an horizontal orientation.

Poiseuille Flow

P = R X T2

The behaviour in this case is essentially the same as that within a Couette

flow.
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General Conclusions

i. For cylindrical particles there is a pronounced wall effect which
may be of a great importance in a motion within small cavities like those

of the human lung, and near small aerosol collecting obstacles,

ii. The sedimentation efficiency of the particles on an inclined or

horizontal plane is decreased due to the effect.

fii. The surface concentration of the particles’ deposit on an inclined plane
has a greater dispersion as compared to that for which the wall does not

exert any influence.

iv. The collision of the particles with a vertical wall is very small due
to their '"'repulsion' from it; only particles with 0 < 6 <T/2 will have '

a slight chance of colliding.

Finally, extending the results to motion near curved convex surfaces, one can !
assume that the smaller is the angle between the tangent plane and the

surface, ihe greater is the (still medium) collision efficiency which is

defined as the ratio between the number of settled particles tc the number that

would have sedimented had all trajectories been vertical.

V. Applications

The slender body method of calculating the fluiddynamic force and torque
on the particles seems to be more useful than that based on Oberbeck's (4)

and Jeffery's (5) equations since it does not depend on any limiting

assumptions concerning the flow in which the particle is immersed. For example,
any numerically (computer) solved field of flow can be introduced into the

slender body equations where it is necessary to know the undisturbed velocity
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(Eq. 19 ) at the middle of each of the N divided cylinders sections.

This has been performed (with no wall effect,however} in a DFG (Germany)
supported study in calculations which checked quite satisfactorily with

experinments (13),

B. BROWNIAN DIFFUSION

}. Theoretical
1. Method

a. Genera)

The diffusion of aerosol) particles in air is generally controlled by a
Brownian, a turbulent or a mixed wmechanism; near sdrfaces. where turbulence

subsides, it is dictated mainly by the first.

In the case of spherical particles, there nas been already much study on

the numerous aspects of Brownian diffusion, but, very little has been
performed with regard to the process for the nonspherical counterparts. The
difficulty arises from the general non-isotropic nature of teh fluiddynamic
interaction between particlies and medium which makes it necessary to consider

the spatial orientation and the rotation of the former.

A useful way of treating the problem is based on Brenner's formal structure (14)
in which one assumes a six-dimensional location-orientation hyperspace where
the general number concentration is given by the solution of the conser-

vation -equation
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) t 2 r
—_— ~:—--- oJ ~ —5—6 . J b~ O [273

+ v
Here , the translational , J , and rotational, J , fluxes .are

respectively expressed (for axi-symmetrical particles, for example) by

t +
3=-_D.3§":_€ + Cu 1
) -
<
and i
. _ 26 .
J=-Dge+ 6t -

For the physical applications of diffusion,where one needs to have ensemble
orientation-averaged quantities, it Is useful to define a total concentra-

+
tion c, translational flux J} , averaged translational velocity <u) and a

-e
diffusion diadic D, by

¢ {cde

L 'Q

b (T Jd%é

¢
= 3

{uy + .5 Cud [29]
+ + :

D, .ég'.pcdo

<
The total, orientation-averaged translational diffusion diadic D_ s the

h 3
operational parameter to be plugged into the (translational) diffusion equation
of the aerosol ensemble. It is dependent on the orientation distribution

function of the particles which Is the most important property of the

ensemble.
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In Brenners' (formal) treatment (14) and for an axi-symmetric particles' case,

one has instead of [27]

6 ) ? o 0
5t *ar Y v 3¢ d =0 Bo]

where a' =-—ED_L’;—€+ cCu ,and
G(r e,t) = c(r t)f(re,t) (31]

In that case, one obtains for the orientation distribution density € the

governing equation

2ot + 254 = X (v, e, %) (32)

which takes, for example, the form

¢ % 96 _ )

2
G 1 A6
S Pe 3¢ prw ) [33]

2 _(simé 59 1
26 60 55) *+ T 26

where ©,¢ are the polar angles and the rotational Peclét number "Pe

is defined by

Pe i . (34)

n

v
r-

For a quiet medium, the orientation density f has been calculated to be




i

£ :{Z 'gf;r—‘ p.: (0059) gxp[—h(fn+l).r£>4_t]}.ffo F’.,,o(oos 9,>Siw9°d9°

S~ -m)! (ama) p""( 8) - , 3P o+
T Sl o) 0T Ccan6) a5 b anplm(ned Bt ]
v &n ’

T
X

, " -
Vo P (cos 6,) s~ 6, do, . (35’

<

For a flowing medium, the convective-rotation equation of axisymmetric
particles for example, viz.
’ 1

%-i—-= D.LAV-'F— vr'('{'w) [36]

has been (firstly) solved by Peterlin (16) when the Couette conditions and the
pertinent Jeffery equations for & (§) hold. The solution shows f to be a sole

function of the particle Peclet number |

b. The Aerosol Specificity

From the above it can be observed that the (crucial) density function f
for axi-symmetric particles depends on &DL and @ ., The latter have been
calculated in the case of a liquid suspension by classical fluiddynamic
methods (17,5); however, in the case of aerosol systems this is not adequate.
The reason for the inadequacy stems out of the fact that in the very instance

of the only (small) aerosol particles which show a pronounced Brownian motion,

the medium cannot be considered as continuous any more. Thus, both the rotationa)
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diffusion coefficient 1D‘ and the gradient-rotational velocity of the
particles have to be calculated from first principles by statistical-mechanics

means.

c. lmmediate Aim

It was intended to study (for the first time) the rotational diffusion
coefficient of cylindrical or discoidal aerosol particles which form a good
geometrical mode! for many systems. The task has been accomplished,as reported
now and also published under the title "On the Stochastic Nature of the Motion
of Nonspherical Aerosol Particles 11}, The Rotational Diffusion Diadic and
Applications'by Alfred D. Eisner and Isafah Gallily, J. Colloid Interface

sci. 81, 214-33 (1981).
The gradient rotational velocity of the particles in a simple (though not
limiting) shear flow has been calculated too and presented in the publication:

""On the Stochastic Motion of Nonspherical Aerosol Particles. IV. Gradient
Convective Rotational Velocities in a Simple Shear Flow'" by Alfred D. Eisner
and Isaiah Gallily, J. Colloid Interface Sci. 1982 (in press), which is not

included here.
Finally, a third (summarizing) article is in preparation.

d. Medium, Particle, and General Governing Equations

Out of the generalized Einstein equation

“M ="D/kT (a=t,r,c) [37]
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'2' between the translational, rotational or coupling particle mobility and the
respective diffusion tensors, and from the relation to the operating

torque N exemplified by

F

L, = - M. © , {38

one notes that the core of the calculations is imbedded in the evaluation of

L, .

The (considered) particles, assumed to be much smaller than the mean free path

L of the gas molecules (kv > 1 ,are taken to translate
with a linear uniform velocity U, with respect %o an inertial system

of coordinates 0, (Fig. 22), and rotate with a uniform velocity w with
respect to the center of mass M in a quiet medium devoid of external torques.
Thus, the source of L. is supposed to be only the stochastic bombardment
of the gas molecules.

For our medium (and structureless molecules), the distribution of the molecu-

lar velocities is Maxwellian, i.e.

. ‘
No, dv@dv@dv®@= N (/o) axp - h (0% @ v dvOa@a® DY)

where (1),(2),(3) respectively stand for X2, Ya 2 and h= m/2kT,
Concerning the inertial system O, itself, there is no preferred position of

its placement in space since the latter is assumed (by the above) to be

isotropic.




Fig. 22. The external system of

coardinates 02 .

The particles' surface condition- :dopted in our analysis are those
of Maxwell (18) according to whom one has to distinguish between a diffusely
reflected fraction o of gas molecules with a Maxwellian distribution
conforming to the surface temperature T; and a specularly reflected

fraction ( t~a ) for which
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from the point of view of an observer at 02, the velocity of a gas

molecule relative tc the body-point OI(Fig. 22) is

v, = vy - w@xR - U

Thus, the number of these molecules of velocity between v, to v.. /v,
hitting an elemental surface oS around that point in a unit of time

is

3/2

n(;“)olsvzds = - N(h/“')

(v, - wxR-v,)m]

cexpl-hiv*] oy, oS (42)
the momentum transfer at that time is
m(vy=-wx R - u,,)'n(;"}dsvldS, (43)

and the torque imparted to the particles in the &k direction

is

< <N (S TR - n -]
Ve

(b, - k)

3
X [(vy-wx® -V, )n) g~ hival d’v, oS {ua]

which is a typical governing equation.
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The contribution of the reflected molecules is expressed Iin a similar

fashion but with the exchange of h and N of the velocity distribution

of the incoming molecules with h- and N of the diffusely reflected

ones as determined by the requirement that (for a steady situation):

i. The net flux of molecules at each particles surface element is zero;

ii. The net total energy transport at that element is zero, too.
The total torque imparted to the rotating-translating particle can be put as

(t*) < (i .
RNy = G-e) [(L, kO, (L,-h_('>("\]

sl ) e "] g

F

2. Calculational Procedure

a. A Spherical Particle

This has been chosen as a test case for the proposed method. Taking here

the "natural' coordinates system ¢_, t, and t, (Fig. 23), one has

R =r(simecosdi + simgsindi + wsé k}, {u6]

N = Smlcosd L + s'mosm‘yj + cosGk 3 [‘.7]
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where A, the transformation matrix is

sind cosd sim@ smd cos 6
A —_ cosd cos® cos® siméd - sn8 [u9)
~sin® cos @ 0
Y 4

w} |

Fig. 23. The spherical coordinate system,

Due to the space isotropy, it is possible to write

(50]

and

V, =V, (sim¥§ + cosWi) (51)
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Gn)
A sample procedural way for calculating ( L, - e ) for ¥= p
is given here as follows:
i. The integrand
I, =k-(Rx(Vy-@xR C U)W, - wx R =u)em]
= rsm8 Vlev:.. ruﬂsme s 6 Vf— 2o sin?e v:
r2ew Uy cos @ sin?e . (52]
!
ii. Integration boundaries
r
—wo eV, M &0 and so , as n=t
5
v M = v = v, ~ U, ws@ (53
which gives
3
soo £V & Uy cos8 ) (54 3
Also , LR . (55)
iii. Final equation
ar W o of U"w‘a
(in) 2/2.
(L’.'k) -_:-N‘"\ (h/ﬂ') f { f [ f I.’
[ O =0 60 lg0
a 1
-h (v ¢ w0 V,“) lJl dv,’dv}dv,‘ r3ein0dé [s6)

X €
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where |~ ,the velocity conponents transformation Jacobian is 1.

b. A Cylindrical or Discoidal Particle

Now. the ''natural'' system of coordinates is t,,t, and

Fig. 24. The cylindrical system of coordinates.

Thus

geosdi + Csmdj + 2R

n
]

t, = wedi + smd§ )
ty=—ombi 4+ s b§

t‘=ka

t, (fig.24).

(57]

(s8]

(591

(60]
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i and

/ vzé) /v,}
Vz(’) = B | Vz° [6']

e :

where B, the transformation matrix, is

o8 ¢ sim ¢ o
B =] -snd cos ¢ 0 (62]
0 0 1

Placing the 02(external) coordinate system (Fig. 24) so that the polar
axis of the particle will coincide with R , and assuming an arbitrarily
directed angular velocity W= Wb o+ Wi + Wk,

one can carry out a piecewise calculation of the total torque imparted to

the envelope and each base of the particle. By order of magnitude conside-

rations (APPENDIX 2), it can be shown that the ordinary translational
velocity of an aerosol particle, V,, , Is negligible with respect to Vv,
and w x R (Eq. [44) ). Consequently, it becomes possible to
express the Integrand of [44] for the molecules which hit the

particle's envelope, for example, as
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I = i [Rx(vg~- @xRJ[(v,- wxR)-7m] :-Esi'nct\ggz

+ (- -0, et sim?d -0, 28m30 + wyetcosd sm P + wadcosd sin b

s Wy gcosd) vy 4 (0w, 82 S - 202 sim P cos P) v,’+ (- @, 2%mé s d
+ Wy 22cos? @) V,_'P + € simé VoS vzi_. z cos® V,’V," - wfz’;m#

y @787 2Cos?0emP - 0, 872 wsidsime - Wielzsind + 2 W0y *y

s dsnteé + @, cas® + W W8 Elcos ® s - wWaw, 3

cos®d . [63] J

The integration limits in the (governing equation) [44] are set to be

cwiVim =Vt W Ism® ~ W, Ecosd £ 0 , which leads to

- & V,,g £ cwZ2cosd - W% eimo

2

and -0 £ N,

Finallly, in this case, the torque can be written in the form

(L,-i) =-Nm(h/rr)y"ff {'!‘ T, e—h(h’zv;’iv,")

Se vi‘ve ¢

(m)
c

dvs dvtdv d S [64]

where the velocity limits are given by the above, and d§= golzol¢

(olnt&zrr)——;-é!é.%)- :




- L8 -

For the case of kl/ﬁ&ii«i which almost always occurs (APPENDIX 2), and

when utilizing certain integral values (APPENDIX 2), one obtains in the

typical procedure shown here that

NG . ‘
(l.F'L)c =-Nm(h/n)'/‘u.[____£/iza&,_‘_

r . 2
- 0, sim ¢
4 hg/z Zh ( g

>

-, 2%cos P +wretcos®sind - w,2Cos* Sin @+ @ 82C069)
+ (02872 cos™dsind+ w e 2 sind - @,2235im ® - w," ¢7F s simd
+ 00,2220 + 0, 02 83 Zsim P + 0,02 87 cosd s P + w0y (12

o5 Sim § ~coa s SZZCOSJQ)(—'Z-(%)'%» 22 Cos®~ co,25m)+ 00~ )}dS [65]
where 0(...) denotes higher powers of ©; wa' which can be
neglected (APPENDIX 2).

I}. Results

1. The Spherical Particle

The total torque on the spherical particle for o= wR  and

is found to be

ot 2
(LF . R)(.t )= _d(—E—>Ylw N m r? (—%— + ——'8—-5— h Uy ) [66)




which, for the common case of h'hWJH 41 (APPENDIX 2) ,turns

to

(L, - k)(w) = c((ﬁ/!)("/h)'/sz‘m o (67

Ey. [67] is exactly similar to that obtained by Epstein (18) in a
different way and so one may certainly have confidence in the calculational

method.

It should be remarked that in the above case

(o)
(L, i) = (L9 2 [68]

as can be easily seen.

For the arbitrary L}M direction, it is found that

(L, " - o (w/h)" oo Nom 1
x {4 + £ (ssm*)hu] (69]

which becomes identical with [66] as w=0.

2, The Cylindrical or Discoidal Particle

The tota)l torque on these particles Is
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(ke )OO s (E) o N g P [( v g+ 22+ p°)

Y2 4
s (It _ Lg ogf w;é £*) + % h? W s (_Ei

Yz h . 3
e RS e b (whe D)

3 5
( ,g; Tl 8’§L + o)1+ 00 {70]

which can be written to a very good approximation (APPENDIX 2) as

ot !
(Lo )7 F =(F) TN L (v g o epts )
ro (e - pp - g T2 6] (1

where g=s5/L .

Similarly to Eq. 71 ,it is possible to get an equation for the torques

imparted to the rotating aerosol particle along its other axes; these came

out to be

) tD)
L, i~ o, (72]

and

(tat)
(chk) ~ = Wy

. {73

Thus, the (vector) torque can be written as
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L'_ = -fL- = ;:7‘.:
r -t
where =™ is a symmetric diadic whose eigenvectors lie

along the symmetry axes of the particle. A similar deduction can be
reached from Landaus and Lifshitz's (19) reasoning based on irrever-

sible thermodynamics principles,

a. The rotational diffusion coefficient

From Eq. [38] one has that

r U - LN Y o {75
o (L, 0O ]

which gives, if one uses the kinetic theory relationship NM(L:_)':

=} ('N[t)

v

E Dlz = : i kT _Kn PR [76]
| mp LDy v g et p) (T g 3Py Tt p)]

) where Kn=1[¢ .

|

i

Eq. [76] should be compared to that of Edwards (20)

- € RT

: N
D, grp (LD o)




as is presented in Fig. 25.
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Fig. 25, The rotational diffusion coefficient of Cylindrical
particlies in air. A1,BI,C‘ - values of this study;

A,B,C - Edwards' values.

{11. Discussion

1t must be re-noted here that our calculations apply to aerosol
particles whose dimension, in any direction, is much smaller than the
mean-free path 1 of the gas molecules (=0.069 pm at normal conditions),
and to a quiet medium. For larger particles within a flow, one has to
recur to the Boltzmann's integro-differential equation of the velocity

distribution whose (closed form) solution is not known as yet.
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The results of rD_L themselves show that:

6 I

i. The values of the coefficient are of the order of 10 -107 sec ',
* which makes the typical relaxation times for Brownian rotation phenomenta,
negligibly small,

;-
-~ —

ii. The calculated values are greater by a factor of about 30
than those obtained according to Edwards in classical fluiddynamic means, which

is reflected by the rotational Peclet number assigned to a diffusional con-

dition of orientable particles and, hence, by the orlentational distribution

density.

IV. Applications t

As an example for the use of ?D* in a real problem, it is possible
to take the diffusional deposition of cylindrical aerosol particles on an

infinite plannar surface and in a quiet medium,

a, Gereral

Employing the cartesian coordinate system shown in Fig. 26, one can

write down Eq. [(27]in the form

% = [9 +(D"—D‘._)o--ne cos?¢] xa"'[D*(Du D,)

. 2. . 2 3¢ t t
$in"8 sim OJW'FCD_L*(Dn :

+ + . "
+2(D, - D ))smesind cos® ____.__; Ga' v 5in6cosd Sim® |

2 |

26 r1g .
+sn9wsams¢i——3 [m —a—-é—(s'"a“ +m IQT"] (79 .

3%, 31,




- 5'0 -
X3
/' |
i
i l
|
I
I
|
| -
\\\ ; Xy
P |
~d
o H

X,

Fig. 26. The cartesian system of coordinates used in the i

diffusion analysis.

b 4 . .
where ﬁp,, , D, are the translational diffusion coefficients of the

particle parallel and perpendicular to its polar axis, respectively. Now,
if it is assumed that particles' orientation density is independent of

their location viz.

6(?,0){'): CC"',Xx,xs)f(O,Q,*) ? [79]

then, instead of (78] , one obtains the two equations:

i

r . - 2
35/t = ”JT#‘T’?‘@("“’%?)*‘—!@%{?] [80)

$in
whose solution is given in Eq. [35],and r
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+ + t . * t, t i
:i = [ D, +( D“"-D_L) sin*g s?¢) aa:‘; +L DJ_"(DH" ®,)

. t
sm"e sin "n-

2 ¢
i

+ t
+ 2(Dn'DJ->[5"7129 s'm¢ws2¢ ~3_2C__

+ ¢ Losé se
3%, o%, me wsb siné

. e ?%c
‘ ax‘.axJ‘P Slme Crs O GOS¢—,a—xa—a—z'J . [8']

At this stage, the orientation averaging being defined by

amr -
P o(or 3 1(6,0,4)sin6 dod ¢
i f f—(ﬂ,¢)‘t)$in60'9d¢

one reaches the final equation

21\' by
¢y - . ( +(9,4’,t) simo dgde _ B¢
i ?f n‘(e,¢,+)meolea¢ ot

:[*b_._-'-(fD,, > )(s-—nscos¢)] ,. +ED "‘(—Du -'D_._)

Coimte simi03) L& S oI5, (B, + (By-D sy ] Lo g
L 4
since the mixed terms 9%e / Xy 3 Xy drop out.

b. Specific

é in the specific, above diffusion case where it is taken that concen-

tration gradients exist only along X,

2 = D(t) _._,g‘.c‘ (8y |
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where the orientation-averaged translational diffusion coefficient o0 (¢)

is
b 5 t + 2
D(t) = D, + (D, - D )<sin'e sin?d) | (84]
]
Peforming the orientation-averaging of the function s.'m‘e sim* @ one {
gets that

b (t) ‘-‘-f-D,L + (*:Dn _*'D‘-){_"!- (- uP(—GrD"'{-)]} - 18]

Concerning the solution of 83 , it is advantageous to define a (new)

vriable P by (21)

t
P = [D(H)qt (8e]

whereby one obtains that (for ¢=¢, at ta= o and ¢z o at

x,= 0 and 't.>o)

C=Co ¢ (T;"iii )= ¥ 2(T;a(4')d¢‘).h] ’ (87)

3 being the Error Function.

The total number of deposited particles Mtafter time t wil) be then (22)
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t
peo (L2 )

M, = = (88]
c. Results
The number ™M, vs, time is presented in Fig. 27 for the two
cases:
t
A. When *D,, and D, are calculated according to classical continuum

theory, viz.

N kT
= 89
P 2w pl [\AEn (4jp; = €.5)] [89)

and

Y " L/ tn C1/R) + €5)]

-

r
and Edwards' value of D, ( IDJf ) is assumed..

U1

B. When these coefficients are given by Dahnekes molecular reéime equations,viz.

* - kT Kn 1
D, = ﬂr’[q...o(<)+(|/F)-z-ﬂ)/‘l>] [9]

and

T _ RT Km
D, = S
* TS L(1/p+axt+(yp) = (6-M)ay] (52

"
and our value of D, Is taken.




Also, M™M._ is calcuaited for case ¢ of a volumetrically equivalent

spherical particle.

From Fig. 27 it is seen that the values of case B are significantly higher
than those of case A but that those of case C are higher still, which is
resonable if one remembers that diffusional particle mobility is a property of the
surface of the latter and that the surface of the volumetrically equivalent

sphere is the smallest of all forms.

it should be noted that in the still~medium diffusion discussed here
is essentially independent of the (very large) value of & () for all experimen-

tal times of interest. The value of 33; will matter in difusion in flow

. ' r
"
where the rotational Peclet number pQP (= et / D, ) does
count.
a1l -
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Fig. 27. The total number Mt vs. t.

A, case A3B, case B ; ¢, case C cited above.

0.0075 pm , L= 0.7 pm™, T= 298.16 °K , ,4-.-1344.22“0“ poise
2

-
n

6.69 x 10" cm.,
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C. APPENDIX 1,2

1. Appendix |

a. Green functions

Generally, expressing thc disturbance due to the siender body

by (Fig. !)

ra e r ]
T . v Voaoof : 1
oo e VY = g e et 58 {riodr! (c.1

d

)

L) (—

where 42 {(r) is the drag force per unit surface and \J;—;”‘

is the double-layer potential (which can be neglected), and using the

radius vector ' (Fig.1) to define positicn, one can expand ng(r,r%

according to

Wig (ry e = uyCeyen) wogyg (‘%T-‘k) Y

jk
i v 'al
+ T ?k g\k é;-kuarx. ) uiaki + -

where ' (r', $) is the radial vector of the point P' (v";

starting from its vertical projection on the axis. Then, one can write

l t
vi(r) = g .h {(r") u;a' (r, rd e+ -(-(a'k(r'; Uiste (r, v e (c.2]
bl -1

where
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_f,a. (r9) :é g'-{}(r‘)!') dv ,

{-jk (r') =§ 9‘§.'fj|("" g‘) d L 4 etc.

since

= or o ?'<r'; ).

b. Definitions

C =
“y

(. " .
C, wsa ...Czsmgl \'z="c,'S!ﬂ9+C;Co5g, C,= C3- .

2 .2 [
M, =2cos8+sin°g , M, = Mz|=‘5""9m9, Ms=Mg=0,

Mzz"=25"’":‘9*°°5‘9; Myy=Mazo0 s Ma=1.

Ty = Keos?d + Kypsim20, Ma= Moy =(KyyoK)sing we 6,

Ksint8 + Kap COSRGJ Myx = KyyCosé,

Tr‘._, = ‘<23 51'0193 Mo =
"’| = Ku Sl"'ne ) Traz - K.?Z cos & P TT” = I<85 .
z .
I :(S’z/g‘)sm"e, I,,= I,, :(g:/gl)s(me ws 8

= Iy =(06,/e)smo, Ty = 8lcos%e  I,,=(82/ 02).

' . .
T = simeg , I,;_ = I‘: = 5Mm8 Cos 9, I,;:O , I;, = 00819,

'} n

. L . -
u I,/ =-5im6 wséo, Im‘:-s«‘nel I,=1y

H
§
]

N
)
H
5
"

=

oo




A B Nt 5P s

m e . b e o A C—— e W %w s ¢ PO E———

- 61 -

where 6 is the angle bet.een x and  x,

pal
o~
w
i
)
~
i\ .
Q
2]

-
A {r, = ) fé v JWa~ (r, r dr!
-{

c. Elaborate procedurc

This procedure is based on Eq. [20] . Employing the transformations:

X — X, = m & , X' x“.:'ﬁd wheve 4= 2U/N

one defines

’ . - \ .
Fk'nj'n') =A(m-m") y Nom, ) = ’wsef’r—n‘)’ r‘:(‘nifn', =0,

Y‘: ('n,y‘l) s’m O (’n-y.')A ) Y. (.n,wl) = C0s &8 (,.n_rl:’ a s

rln,m) =0, ry(n,m)ssimO(n-m'ya, hin n)=n'a+I,

M ('n,'n') = P4;J {n _1L71' - M + 0.5) A i
‘4 (m' = m;m - 05) A

M (w2 My b (nlom rois o onem

(n'=-r -c8)d
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and writes [17] and [18] in terms of these transformations.
Thus, u‘d“ (x,x') — A (v,m") and Eq. [20] is expressed as
U'(z-) = Z ‘T‘(X',x') {rr,
rt
where 5—: N(L-j_)J-‘ﬂ’ X":: N(;-Oa—‘ﬂ‘.‘ T((:J">

= M) s AGny) for pay, T E): NG A r) te gy

2. Appendix 2

a. Order of magnitude of h‘“‘un

Taking a typical case of Um = 0 (1) and calculating h to be
s.47 x 1079 sec 2 ™2 for T = 298.16°*%X and air molecules,

one obtains that

[ -5
h"un = 0(107°), which Is much smalier

than unity.

b. Order of magnitude of h'2 v, w.

4

. - -4 _ - - -5
Taking L= 0.1 x1077em, ¢=0.0075 x i0 em., ¢, 14. ¢cm

6.69 X10°Seom.

)

and air molecules at T= 298.16 ° K K= ‘!8"-22"Ny-‘}"““ﬁ"=

and estimating W, by the law of equipartition of energy, viz.

+ 1, (WD = 5 RT fc.3)

"
»
-

one gets that
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d. Integrals
v L,
iy -L‘x: w - - b2 7. i e—";
( x*e dx = ——[12 @7 0F = §
-

2
*a N -
-f’ -h{“; _ e ? ,
. oxe X = S
S-
23]

ge-h‘zdx = (T"H")'hz ’

< 2 s/

- T '/2
[ xtet o= Jpm
-




C. NOMENCLATURE

a - constant of systems geometry; half-width of flow channel

A,B - transformation matrices defined in text

b- characteristic eouivalent cross-se~tion radius of (slender) particle
br- lecal equivalent cross-section radius

B, B:S R Bf: s B;' - constants

c - particles’ total number concentration, o ~ initial value

S - vector, defined in text

D - distance, defined in Fig. 2

,0.Pp - translational, rotational and coupling diffusion diadics,
respectively

Dy - rotational diffusion coefficient around a mid-diameter

D,y ~_ - translational diffusion diadic components parallel and perpendicular to
polar axis, respectively

D. ,D, - distances, defined in Fig.4

R - o (E’), -13_‘_)(5!71’9 st

e - unit vector along svmmetry axis of particle

f - orientation distribution density

+, (') - Stokeslets' distribution density; fék (v) -doublets' distribution

density etc.

(r" - drag force per unit area of particle

s

o - external force; F_. - fluiddynamic force

+

acceleraticn of gravity

«“©0 N
]

- particle-wall distance; also, m/2kT
, I, - moment of inertia of particle

, I'' I - diadics, defined in text

. intergrand, defined in text
rotational flux of axi-symmetric particles

-~ particles' flux

transformation Jacobian

~ Boltzmanns constant

T X 4y M T
!

, » k_= constants

Knudsen's number

x
3
t

~ semi-length of slender particle

mean free- path of ges mclecules

-
[

length of cylindrical particle

[] - avtarmal tArana- t - fluiddvnamic taraue '
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m - mass of particle
Mt - total number of deposited particies in time ¢t
M - diadic, defined in Lext
™ - mobility diadic
n - unit vector normal to dS
n, n - running indices
TRREETE) - number of molecules hitting unit surface per unit time
A - density of Maxweil's velocity distributicn
N - average number of gas molecules
P - defined in text
- - rotational Peclet number
Pe; - particle rotational Peclet number
f - associated Legendre function
' re - typical length of particle
v,rr' r™ - distances defined in Fig. 1 and 2
r - location radius vector , v - radius of sphere
- radius vector from geometric center of particle to a point on its
surface.
S - particles surface; dS ~ surface element
t - time
T - Temperature
Uy (v, r', - etc.- Green functions associated with
U,,uw - translational velocity of particle
v (¥) - disturbance velocity of slender body
va, V, =~ velocities of gas molecules in the 0, system and relative to dS
_ respectively;v' - velocity of reflected molecules.
' - translaticnal velocity of slender body
Vm(f) - double-layer potential
' X , x' - position distances on body's axis (Fig.1)
X, X, , X3 - coordinates
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Greek leticers
© - traction of gas melecules reflected diffucely
o= 8

- running incices

& - Kronickers' delta
A - /N
¢ - Levi-Civita permulatior tensor
> - fiuid's vorticity
¢t - angle, defined in text

¢3- polar angles

A - vector, defined in text

- dynamic viscosity of gas

M - diadic, defined in text

€ - position vector, defined in Fig. 1

§ - gas density; cy!indevs raaius

2 - particles' density

G - number concentration in location-orientation hyper-space ;

. N
also, [(fm/210/3]

¢ - orientation {pseudo)vector

® - Error Function

Y - angle between 4, and w

€ - rotational velocity of particles; w,, cw, , wgy -components
2 S

M - center of mass
o - initial value
¢ - cylinder's envelope

Superscripts

! (in) - hitting molecules
o - t,r,c
) (r) - reflected molecules

(tot) - total
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